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An ART-Based Fuzzy Controller for the Adaptive
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Abstract—An adaptive-resonance theory (ART)-based fuzzy and path planning of mobile robots [18]-[27], [42]-[45]. For in-
controller is presented for the adaptive navigation of a quadruped  stance, Taylor and Kriegman [22] provided exploration and nav-
robot in cluttered environments, by incorporating the capability igation algorithms that would enable a mobile robot equipped
of ART in stable category recognition into fuzzy-logic control for . .S .
selecting the adequate rule base. The environment category andW't_h . V|§|on—b§sed recolgnltlon system to carry out an gxplo-
the navigation mechanism are first described for the quadruped ration of its environment in search of one or more recognizable
robot. The ART-based fuzzy controller, including an ART-based objects. Yamamotet al. [43] developed a sensor-based navi-
environment recognizer, a comparer, combined rule bases, and gation system using a target direction sensor for mobile robots.
a fuzzy inferring mechanism, is next introduced for the pur-  qaqaet al.[42] described a human—robot cooperation system

pose of the adaptive navigation of the quadruped robot. Unlike . . . - .
classical/conventional adaptive-fuzzy controllers, the present which could realize robust behaviors of mobile robots in a real

adaptive-control scheme is implemented by the adaptive selection World by combining human ability of recognition, inference
of fuzzy-rule base in response to changes of the robot environ- and decision with robot’'s autonomy. In addition, Kubetaal.
ment, which can be categorized and recognized by the proposed[18] introduced behavior learning of human-friendly robots by
environment recognizer. The results of simulation and experiment  ;man symbolic teaching for navigation of the mobile robots.
show that the adaptive-fuzzy controller is effective. - .
In this paper, we attempt to develop an adaptive-fuzzy con-
Index Terms—Adaptive control, adaptive-resonance theory troller to navigate a quadruped robot based on classification and
(ART), fuzzy controller, navigation, obstacle avoidance, quadruped recognition of environment. Unlike mobile robots, quadruped
robot. robots are able to walk on extremely irregular ground profile
and to step on/over some convex/concave objects which are re-
|. INTRODUCTION garded as the obstacles mobile robots have to avoid. Although

! S ONE TYPE of legged vehicles, quadruped robots Céﬁere have been some creative outcomes of vision system which

perform some tasks in the work space with a rough tefould be used to observe environment for navigation of mobile

rain, e.g., mapping building on the uneven ground, searchi ots [2_2]’ [44], [45], itis still difficult to glqssify_apd recognize

and removing landmine, collecting volcano data, etc. The al ld enwronments by means of the existing vision/sensor sys-
tonomous walking of a quadruped robot depends on not only tﬁé?(s f?r navtl.gatllontﬁf qugdrtjlpelsl r?botgdt()l perfortm Tazaclirdolys
gait implementation but also the navigation control. AIthoqu‘S S- In particular, there IS a fack of a widely practical and rell-

there are a lot of works published on gait generation and cont?cﬁle vision system to identify various terrains and obstacles that
for quadruped robots [1]-[17], to the best of our knowledg@uadruPed robots cannot step on/over. As a result, conventional
’ gnsors cannot give full play to measure distances between a

few papers are found addressing the adaptive navigation 0?9%1 ) )
quadruped robot in cluttered environments up to now. For Sobot and these terrains/obstacles. Therefore, human involve-

ample, Lee and Song [1] described the gait generation metHQ§Nt is necessary to describe the complex environment for the

for a quadruped robot to follow a planned trajectory in a I(nov\)ﬁavigation of the robot. In order to lighten human load, to de-

obstacle-strewn environment. kb al.[17] discussed the adap—VeIOp the robot's autono_my,.and finally to implemen.t the com-

tive gait pattern of a quadruped robot to a treadmill environme?llte'[(aly autonomous nawgatloq by means of a soph|stlcgted v
(ground profile) rather than an adaptive navigation in a Walkirgtjn/sensor systgm, the ad'aptlve'-fuzzy controller is designed in
space. Furthermore, it is very difficult or complicated to esti ch a way that it can obtain the inputs from fuzzy language or

mate robot position in a complex environment for the navigatioer{“'Ironment dgtabase provided by a human operator in a far-
way observation.

control by means of the existing algorithms of gait generatioﬂ. lassical f daoti trol methods have two kind
On the other hand, many researchers investigated navigatiorq: assical uzzy adaptlive-control methods have two kinds ap-

proaches: one is the learning model (LMAC) and the other is
the model reference adaptive control (MRAC). It is well-known
Manuscript received April 5, 2000; revised September 29, 2000. Recokfiat, Unfo_rtunat_eIYv real-time control Is QIfflcult due to the long
mended by Technical Editor C. S. G. Lee. computational time and the design and implementation of these
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Technology, Wuhan, 430074 China (e-mail: chenxue8388@sina.com). ure. Conventpnal fuz;y—adaptlve cqqtrollers are deS|gned S.O
K. Watanabe, K. Kiguchi, and K. Izumi are with the Department of Adthat membership functions are modified by some parametric

vanced Systems Control Engineering, Graduate School of Science and E@janges of the system. However this method leads to an inef-

neering, Saga University, Saga 840-8502, Japan (e-mail: watanabe@me.saga-
u.ac.jp; kiguchi@me.saga-u.ac.jp; izumi@me.saga-u.ac.jp). fggtual robust property of the fuzzy controller [29]. Moreover,
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Fig. 1. Human-coexistent quadruped robot system.

same problems as in classical adaptive-control methods [28%. 2. Schematical drawing of the quadruped robot TITAN-VIII.
Actually, such an adaptive control can be also implemented by
an adaptive selection of fuzzy rule. For example, Kinal.[29] e
presented a fuzzy controller constructed with parallel combina- e o e
tion of robust controllers by using a multirule-base architecture, /,._.- \\\\\ »
and verified the robust stability of the fuzzy controller even in b

. . . . . oo ’ Left - front Front Right - front "\
a big parametric uncertainty. Nevertheless, an online identifi- ___________
cation of the parametric variations of the controlled system is ~ / A7 i df /'C> \
a difficult and unavoidable problem. Clearly, classification and  / / dlf/"
recognition of environmental changes is a key technique to re- -/ !
alize the adaptive navigation of a quadruped robot. i

Adaptive-resonance theory (ART) [30]-[33] is known to be | [ ) Left
powerful in self-organization of stable category recognition. ‘\ L '
The reason is that ART networks and algorithms maintain the —d
plasticity required learning new patterns, while preventing the %
modification of patterns that have been learned previously.
Although many people have found the theory difficult to ‘
understand, this capability has stimulated a great deal of ’
interest. For example, Liat al.[35], [36] performed an online S
structure/parameter learning algorithm by combining the back-
propagation learning scheme for parameter learning with the _ o o
fuzzy ART algorithm for structure leaming. We here propqsg gs'tgélesE{‘r‘]’gtotﬂrgfgé;eég‘#r']%r: :tg‘; g'r‘]’/'glloe”r_' where the shaded areas denote
an ART-based fuzzy-adaptive controller by incorporating
the capability of ART in stable category recognition into the
fuzzy-logic control for selecting the adequate rule base. Thige robot. The radiu® is an important parameter for the envi-
proposed approach is characterized by quickly recognizing ttmment cognition because the environment scope is relative to
current environment category using an ART-based neural nefalking specifications of robot, which leads to different envi-
work, and by implementing an adaptive selection of fuzzy-rul@nment category. For example & = R; in Fig. 3, the envi-
base in response to changes of environment. ronment of the robot is the nonobstacle one; bR i R, in

The rest of the paper is organized as follows. The environmdri@. 3, then the environment of the robot is the obstacle-strewn
category and the robot navigation are presented in Sectionane. Actually, R is naturally embodied in a changeable vari-
Section Il motivates and describes the design of the adaptiele if obstacle distances are provided in fuzzy language. On
navigation controller. Section IV shows the simulation and efe other hand, the environment category also depends on ob-

perimental results. Finally, Section V discusses some of concfiacle distribution in the specified environment with respect to
sions drawn from this research. the robot. Therefore, the environment category may vary with

the position of the robot in the environment. As a simple ex-
ample shown in Fig. 4, the obstacle is in the front of the robot
) drawnin solid line, whereasiitis in the right of the robot drawn in
A. Environment Category dotted line, and clearly, the environment category of the former
A human-coexistent quadruped robot system is schematicallyould be different from that of the latter. Moreover, catego-
shown in Fig. 1. The basic mechanism of the quadruped robizting the environment also depends on the division of the en-
named TITAN-VIII is drawn in Fig. 2, wher@m and2n de- vironment with respect to the robot [19]. As shown in Fig. 3,
note the size of robot body, while, and H, represent the ini- we consider five subareas of the environment with respect to
tial leg stretch in horizontal and vertical respectively. As showthe robot: front, left, right, left-front, and right-front, whede,
in Fig. 3, we define the environment of the quadruped robot th, d.., d;f, andd,.; denote the obstacle distances in the corre-
be the area surrounding the robot with a raditisentered at sponding subareas, respectively. Therefore, there exist 32 pos-

Il. ENVIRONMENT CATEGORY AND NAVIGATION MECHANISM
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Fig. 4. Robot is navigated to a specified target with the obstacle avoidance,
where the robot in solid line denotes the current posture and that in dotted line
represents the next posture after a gait cycle.

sible environment categories shown in Fig. 5 under the circum-
stances. The obstacle distances are evaluated according to the
current robot posture (position and orientation) and the environ-

ment database, or are directly provided in linguistic variables

: Fig.5. Categories of environment for a quadruped robot, where the rectangles
such as/ery Near Near, Middle, Far, Very Far, etc. denote the robot and the line segments denote obstacles.

29 32

B. Navigation Mechanism . . : .
vigatl I qguadruped robot, in which the robot is controlled to begin at

The quadruped robot realizes its travel in stepping locomthe initial posture and to end up at the next initial posture. The
tion mechanism. In our previous work [47], the control algoso-called initial posture of the robot is given in Fig. 2, where
rithm of an omnidirectional crawl has been proposed and implghe initial leg stretch in horizontal i&q, whereas the actual leg
mented for the robot TITAN-VIII on the irregular ground. Basedtretch in vertical is subject to the roughness of ground profile.
on a prescribed walking requirements including robot stride amtherefore, once the robot performs a gait cycle, it returns to the
turning angle in one step (a gait cycle), the quadruped robot daitial posture for the next gait cycle. The next footholds of the
be controlled to perform the gait cycle with a desired stride, desbot with respect to the current body frarfig are expressed
noted by, and a desired turning angle, representedbbyn by °p,. = [z*, cy¥, ©2*;]T fori = 1, 2, 3, and4. The orienta-
other words, given a command on the desired stride and turniigh matrix of 3....., with respect ta.,, is denoted byR..-, i.e.
angle in a gait cycle, the robot can be navigated. As shown in

Fig. 4, the robot crawls toward the specified target without col- cos¢ —sing 0
lision with the obstacle, wherE.(c — xyz) denotes the body ‘R.. = |sing cosdp O]. (1)
frame andy) represents the target-orientation angle. According 0 0 1

to the current environment, the robot performs a gait cycle to

reach the posture in dotted line for the obstacle-avoidance. Heraus, we have
Y.+ (c* — xzyz) denotes the body frame after the gait cyde,

and .S, denote the components of the striflén z- andy-di-

rections ofx,., A; fori = 1, 2, 3, and4 represent the current

footholds of the robot, and; for ¢ = 1, 2, 3,_and4 rgpresent wherep_.. denotes the stride vector of the robot in the gait cycle
the next footholds of the robot. The generalized gait generatign, respect to the current body frarfie, and® p ,. represents
' Ay

IS descr.|be(':i as _fO”,OWS' ) . the initial position of theth foot with respect to the body frame.
Drawing inspiration from the reptile crawl, we designed thg, Figs. 2 and 4, it follows that

omnidirectional gait pattern for TITAN-VIII [47], which mainly

includes determination of the footholds and selection of the se- . T

guence of swing leg. A gait cycle is defined as a successive per- Pe- =[Sz 5y 52 &)
formance |ift up—swing aheadput down) for four legs of the “ Py =[01(m+ Lo) ban “zg — S 4)

Pa: = P+ Re P (2)
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Fig. 6. Flow diagram of the navigation control for the quadruped robot. dmin

v ering 0

whereé; = 1fori =2o0r4,6; = —1fori =10r3,6 =1

for: =1or2,andé, = —1 for < = 3 or 4. Therefore, we can
finally obtain Fig. 7. Block diagram of the adaptive-fuzzy controller.

S + 81(m + Lo) cos ¢ — Gynsin g Owing to the complexity of environment, it is very difficult

Pa; = | Sy olmt Lojsing+dmeosd| - (5) 4 constitute such an adequate rule base that the fuzzy controller
Fai possesses a wide robustness to various cases in the complex en-
Selection of the sequence of swing leg in a gait cycle must abi&onment. In order to solve the problem, Wu [27] made an at-
by the following rules. tempt to propose a learning fuzzy algorithm similar to “simu-

lated annealing” method to implement fuzzy rules, which in-
creases the flexibility in determining the range parameters of
» The leg stretch does not exceed its limit to reach the d@-? }‘uzzy rgles and tends to.fmd a nqwganon path with gIob_aI
, minimum distance, but considerably increases the computation
sired foothold. . )
urden and makes the choice of the nominal values of the range

» The leg with smaller stretch should be selected as tﬁe o :
. . . . parameters more difficult. Based on the above work in Sec-
swing leg if there are two possible selections.

: .. tion I, in fact, any complex environments can be properly cate-
In fact, the quadruped robot can also realize an omnidiregs ;o4 1o meet such needs that the adequate fuzzy rules can be

tional walking through straight-going gait and standstill-tuming,ghectively designed for each environment category according
gait. The former is given witp = 0, 5, = 5. = 0, and 5 expert knowledge. Each environment category corresponds
Sy # 0; while the latter is given wittb,, = 5, = 5. = 0and (5 ap individual fuzzy-rule base, which enables the controller
¢ # 0. In other words, when the robot needs to take a tuming paye a robust stability in the specified environment category.
for an obstacle-avoidance or an adjustmentin direction, it ado@émbining these individual rule bases in parallel, we propose a
the standstill-turning gait; otherwise it makes the straight—goiquzy controller which implements its adaptive property by on-
gait with great strides toward a specified target. Therefore, thge recognition of current environment category for the robot
robot navigation is concentrated on providing a command @fen selection of the corresponding rule base to make a fuzzy in-
turning angle to the quadruped robot at a gait cycle. The fakrence. The structure of the fuzzy controller is shown in Fig. 7,
lowing mission is to design an adaptive-fuzzy controller that j{hich is composed of an environment recognizer, a comparer,
can provide the navigation command to the robot gait genegmbined rule bases, fuzzifier, a fuzzy inferring mechanism,
tion/control system [47] based on the recognition of the curreghd a defuzzifier. The comparer performs a comparison among

» Each leg only works as the swing leg once a gait cycle.
» The robot must be statically stable in any time.

environment category. the obstacle distances for the minimum one, which is called the
critical obstacle distancg,;,. For the database case, the critical
lll. ADAPTIVE Fuzzy CONTROLLER DESIGN obstacle distance is expressed by

Fig. 6 presents the flow diagram of the navigation control of
the quadruped robot. A human operator can provide the envi-
ronment information to the fuzzy controller in either case: fuzz

gﬁ

dmin = Inin{dfa dla dT’ dlf’ d’f} (6)

iereas the critical obstacle distance is directly expressed in a

1guistic variable for the case of fuzzy language. The control

lowing linguistic variablesVery Far (VE) Far (FA), Middle strategy is as follows: flrst, the current environment category is
recognized by the environment recognizer according to the en-

(M), Near (NE) andVgry Near_ (VN) The latter means that vironment radius and the obstacle distances; then, the fuzzy-rule
the human operator gives environment database to the fu%

. . Hse is selected in response to the current environment category;
controller from an observation or map of the environment, a : . : .
. ) 1hally, the fuzzy inferring mechanism makes an inference from
the obstacle distances are evaluated according to the datal

dth  robot post In addition. the t t-orientati uzzy inputs of the target-orientation angle and the critical
and the current robot posture. In adaition, the target-onentalige;, e gistance to obtain the crisp output of a turning angle
angle is also evaluated according to the current robot posture e

o - ugh defuzzification.

the specified target position. The output of the fuzzy controller
is a turning angle. As a result of the control, the robot performs ART-Based Ervi R ,
a standstill-turning gait with the desired turning angle, where&s -Based Environment Recognizer
the robot takes a straight-going gait with a stable stride whenThe environment recognition in the control loop is imple-
the control output is zero. mented in the form of the ART-Il neural network [31]. The

language and database. The former implies that the current
stacle distances in five subareas are directly given in the f
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TABLE |
< reset | ¥ £ SOME TYPICAL TRAINING DATA OF THE ENVIRONMENT CATEGORY,
3 zy \ WHERE | DENOTES THELINGUISTIC CASE AND || REPRESENTS
h THE DATABASE CASE (IN METERY
&) Category ds d d. dis dos
® (d) No. I I I I I I I I 1 I
1 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00
. Zh 1.00 2.00 0.75 1.50 1.00 2.00 1.00 2.00 1.00 2.00
T \ b 4, 3 1.00 2.00 0.50 1.00 1.00 2.00 1.00 2.00 1.06 2.00
pi 1.00 2.00 0.25 0.50 1.00 2.00 1.00 2.00 1.00 2.00
0.75 1.50 1.00 2.00 1.60 2.00 0.25 0.50 1.00 2.00
4 bf (a:) 9 050 1.00 | 1.00 2.00 | 1.00 200 | 0.50 1.00 | 1.00 2.00

0.25 0.50 1.00 2.00 1.00 2.00 | 0.75 1.50 1.00 2.00
1.00 200 | 0.75 1.50 1.00 2.00 | 0.50 1.00 | 0.75 1.00

) .{v‘{w 18 100 200 | 050 1.00 | 1.00 2.00 | 075 1.50 | 050 1.00
' 100 200 | 025 050 | 1.00 2.00 | 025 030 | 025 050

100 200 | 075 150 | 05 1.00 | 050 1.50 | 0.75 1.50

Fooau fla) 77 1.00 200 | 050 1.00 | 025 0.50 | 050 1.00 | 050 1.00

1.00 2.00 | 025 0.50 | 0.00 0.50 | 0.75 1.50 | 0.25 0.50

Wi X;

The ART-Il network is implemented on a digital computer.
I The network is used in the supervised learning mode and is
trained offline before its inclusion into the control loop. The
inputs of the network = [I; 1y -1y, include R, dy,

ART-Il is a member of the class of adaptive-resonance arcﬁ%’-’ dr, iy, andd.;. Th_e output .Of the ngtwork Is the envi
: . . ronment category. Similarly, the input variables can be crisply
tectures that is designed to handle both binary and analog pat- . .
. - . inputted to the network in the database case, that is
terns and is a modification over the first proposed ART archi-

Fig. 8. Network topology of ART-II.

tecture called ART-I [30]. Fig. 8 depicts the ART-II network I=[Rdsd d, dif dj] (14)
topology. This network includes the principal components Q\flhere

all ART modules, namely an attentional subsystem, which con- _

tains an input representation field and a category representa- dy = { dy, !f dy < R (15)
tion field 5, and an orienting subsystem, which interacts with R, ifdi >z R

the attentional subsystem to carry out an internally controllggr P
search process. The two fields are linked by both a bOttom'HPsome
Fy — I3 adaptive filter and a top-dowh, — [} adaptive
filter. A path from theith 7 node to thejth > node contains a

long term memory (LTM) trace, or adaptive weigh, a path V' N, these linguistic variables should be transformed into the

from the jth £, node to theth I, node contains a weight;;. . . L )

: . . d umerical symbols, which also coincides with the fuzzy mem-
These weights gate, or multiply, path signals between fields. Sgeer hio to be presented in the followin tion. that i
the reference [31] for the ART-Il system dynamics. The baste ~P 10 e presente € foflowing section, that 1S

£, L, v, 1f, andrf. In addition, if there is no obstacle
subarea, then the corresponding obstacle distance is re-
garded as an infinite. On the other hand, if the obstacle distances
are given in the linguistic variable$’F, FA, MI, NE, and

mathematical relationships in Fig. 8 are listed as follows: VF=4 FA=2 MI=0 NE=-2 VN=-4.
pi =u; + Z a(y)zi (7) Thus, the obstacle distances are inputted to the network in the
J following analogs:
i
= 8 i
5= pl ® I =0.5+% (16)
Vs
Wi =7 + | ©) fori =2, 3,..., 6, where@; represents the numerical symbol
vi = f(xi) + bf(q) (10) of the corresponding obstacle distance. Note that, for the lin-
It au (11) guistic case, the environment radifisis embodied in the ob-
Wi =2 wiau” stacle distances expressed by the linguistic variables, i.e., the
Z; (12)  environment scope is naturally limited in tklery Far (VF) and

- e+ |lw ) .
ol hence,l; = 1 as the input of? under the circumstances.

fori =1,..., Mandj =1,..., N, whereM is the number  The raining data for the network is obtained from the real
of £ input channels}V is the number of nodes at stad@;  gnyironment categorizing as shown in Fig. 5, which can be the
the network parameters are such that b = 10.0, ¢ = 0.10, 4310 quantity from (16) or the real physical quantity. The
d = 0.9, ande = 0.0; the threshold i9 = 1/v/M; and|p|, tormer describes the relative degree of the distance between
[vl, and_|w| represent thd., norms of the vectors, v, andw, - ronot and obstacle in nondimensional coefficient, and the latter
respectively. In addition, the thresholding function is adopted #8notes the real distance between robot and obstacle in meter.
follows: We adopt the typical-sample to establish the training data. For
£t) = { 0, fo<t<d (13) example, Table | lists some of typical training data for the first,
Tt ife>0. third, ninth, 18th, and 27th categories, where | represents the
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linguistic case while Il denotes the database case with the envi- TABLE I
ronment radiusk = 2 m. In the concrete, 0.25, 0.5, 0.75, and 1 QUANTIZED dusin, ¢/, AND &
respectively denote thidear, Middle, Far, andVery Faras the i ” # | quantized lovel
typical-samples to present the existence of obstacle for the lin- [m] [rad] [rad] 2, y, w
guistic case (Case I), while the existence of obstacle within an 20500 | < —n/d| —n/d —1
environment with? = 2.0 mis typically expressed by physical ~0.625 :37T/16 “37/16 3
obstacle distances such as 0.5, 1.0, 1.5, and 2.0 m for the data- 0750 | —n/8 | —=/8 ;)
base case (Case II). 0.875 | —x/16 | —=/16 1
Once the training data is available, the network is configured 1.000 0 0 0
such that the number of nodes in the feature representation 1.125 7/16 7/16 1
field I3, which corresponds to the dimension of the input 1.250 /8 /8 9
feature vector composed of the environment radius and five 1.375 | 3n/16 | 37/16 3
obstacle distances in present application, is fixed. The number >1500| >n/4 /4 4

of processing nodes in the category representation fig|ds
generally greater than the total number of input patterns in the
prototype set. Each pattern in the prototype set is sequentially
presented to the network once. A second cyclic presentation
of the prototype set may be made for a stable category con-
firmation. Subsequent presentations do not alter the resulting
category structure. The category structure represents the stable
space partitioning of the neural network depending on the
number of stable categories established during training and _4 2 0 D) 4
the different feature vectors that were classified into these

categories. During training, the attentional vigilance paramefeg- 9- Membership functions.

p is set at its highest value (0.99) to ensure a high resolution of

the resulting category structure. to be fuzzified in addition to the critical obstacle distances
When the network is presented with a feature vector for thgr the database case. These variables are all quantized into
first time, it is encoded in the LTM through modification of th%orresponding universe of discourse according to the robot's
LTM connection Weights. A node is allocated in the netWOfk'ﬁ]echanism Specifications and the designer’s experience_
category representation fielt, to represent the pattern. TheTherefore, the design of the quantization of the variables may
parameters associated with the feature vector now get assigpediifferent from person to person. The turning angle and the
to this allocatedr> node. On presentation of subsequent featride of a quadruped robot in a gait cycle are limited by its
ture vectors, the network’s orienting subsystem first determingfechanical constraints and the ground roughness [41]. For
closeness of match between the pattern currently imposed ongk@mple, when TITAN-VIII crawls on the ground with the
network and any of the patterns that have previously been segjughness less than 5 cm, its maximized turning angle of a
Since the vigilance parameter is set high, a new node is alandstill-turning gait and maximized stride of a straightgoing
cated for the pattern. However, if the current pattern happensyit arer /4 rad and 22 cm, respectively [47]. Obviously, the
be closely matched to the one that the network has already segable stride should be less than the maximized stride in a gait
itis clustered into the same category. Itis, therefore, possibledgrie. The quantization af,i, ¢, and¢ is shown in Table Il
partition the network’s state space so that each partition sery@isere z, y, andw denote the quantization values df,, 1,
as an attractor for a particular type of response characterizggi 4, respectively.
by its feature vector. The vigilance parameter helps to controlHaving made the quantizations of the system variables, the
the coarseness or fineness of classification desired. After cogiirantized data are then converted into suitable linguistic vari-
pletion of training, the top-down and the bottom-up connectiibles which may be viewed as labels of fuzzy setsdkgy, the
Weights of the network, along with the network parameters, aﬁﬁmwmg |ingui5tic variables are used agaNfery Near (VN,)
saved into the computer memory. The above process is repeatedr (NE) Middle (MI), Far (FA), andVery Far (VF) Fors and
for different sets of values of the obstacle distances. After its ip- the following linguistic variables are introduceRight (RI)
clusion into the control loop, the trained network can realize thgght-Front (RF) Front (FR), Left-Front (LF), andLeft (LE)
rapid recognition of the environment category shown in Fig. @, fuzzy set is defined by assigning the grade of membership
according to the obstacle distances evaluated from the envirgatues to each element of the universe of discourse. There are
ment database or directly provided in Iinguistic variables. many types of membership functions, e.g., the bell Shaped' the
i triangular shaped, and the trapezoidal shaped, etc. The choice of
B. Fuzzy Reasoning membership function mainly depends on the user’s preference.
1) Fuzzification: The fuzzy inferring mechanism acceptd-or simplicity, the triangular-shaped function shown in Fig. 9 is
the fuzzy input. Before the data can be fuzzified, it should hesed in this application.
normalized to meet the range of the universe of discourse suit2) Combined Rule Based:uzzy inference is characterized
able for the controller input. In the proposed fuzzy controllehy the linguistic description in the form of fuzzy implication
the target-orientation angle and the turning angle also need rules. In this application, the fuzzy inference is based on

A

VN,RI NE,RF MI|FR FALF VF,LE
1

A\
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TABLE I
LINGUISTIC RULE TABLE FOR THE THIRD AND NINTH CATEGORIES
OF ENVIRONMENT
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TABLE IV

DECISION LOOKUP TABLE FOR THE THIRD CATEGORY OF ENVIRONMENT

xr
No.3 Aimin No.9 dimin _ _ _ _
4 |VN NE MI FA VF ¢ |VN NE MI FA VF v 4 8 -2 -1 0 1t 2 3 4
RI | RI RI RI RI RI RI| RI RI RI RI RI 414 -4 -4 -4 -4 -4 -4 -4 -4
RF|RF RF RF RF RF RF| RI RI RF RF RF -3/-3 -3 -8 -3 -3 -3 -3 -3 =3
v FR|FR FR FR FR FR|y FR| RI RI RF RF FR 2|1 =2 -9 -9 92 -9 -2 92 92 -9
LF{FR FR LF LF LF LF|RI RI FR FR FR “1l =1 21 21 -1 -1 -1 -1 =1 -1
LE|FR FR LF LE LE LE|RI RI FR FR FR
y 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 1 1
the combined rule bases. The changes of environment of tt 2,0 0 0 1 2 2 2 2 2
guadruped robot are observed by the environment recognize ?1 8 8 g i g :3, i i i
After selecting the corresponding rule base which is adequat-
for the observed environment, a feedback control is accom-
plished by the selected one. The recognizer observes the TABLE V

environment at a gait cycle to determine whether the currentPECISIONLOOKUP TABLE FOR THE NINTH CATEGORY OF ENVIRONMENT

rule base can control the robot well and, if necessary, exchang z
the rule base. If the observed environment belongs tatthe w -4 -3 —2 —1 0 1 9 3 4
category, the fuzzy-rule base for the next control duration i S S e Ry Sy Sy Ry R R
theith one. For example, some typical fuzzy rules belonging tc 3| -4 —4 -4 _3 _3 _3 _3 _3 _3
different environment categories are listed as follows: 9| -4 -4 —4 —3 —9 _9 _9 9 _9
IF category is 2 ANDY,,,;, isNEAND 1 is RF -1|-4 -4 -4 -3 -2 -2 -2 -2 -2
THEN ¢ is RI y 0| -4 —4 —4 -3 -2 -2 -2 -1 0
IF category is 3 ANDY,,;, is NEAND 7 is RF 1j-4 4 4 -3 -1 -1 -1 0 0
THEN ¢ is RF 2 (-4 -4 -4 -2 0 0 0 0 0
IF category is 9 ANDU,,i is NE AND 7 is RF 3|4 4 -4 -2 0 0 0 0 0
THEN ¢ is RI 4 |4 -4 -4 -2 0 0 0 0 O
IF category is 16 ANDY,,,;,, is NEAND 1 is RF
THEN ¢ IS FR ) ] using the center-of-gravity method are obtained for the corre-
IF category is 22 AND,y,in IS NEAND v is RF sponding environment category. For instance, Tables IV and V
THEN ¢ is LE. are the decision-lookup tables for the third and ninth environ-

The rule base changes with the environment category, egent categories, respectively.
Table Il presents the rule bases for the third and ninth eﬂVirOﬂ-By proper|y Sca"ng, the real na\/igation information on the
ment categories. All other fuzzy rule bases of this applicatiqorning angle can be generated according to the content of the

are not listed here due to the space limitation.
The inference mechanism employed in fuzzy logic con-

decision-lookup tables.

trollers is generally based on various reasoning schemes. TheNavigation Control Algorithm

inference result can be obtained by using several differentA
algorithms. Mamdani’s strategy—Mamdani’s fuzzy reasoni
method based on MAX-MIN inference operator is used
perform fuzzy inference in this application.

3) Defuzzification: Defuzzification describes the mapping
from a space of fuzzy control action into a nonfuzzy control ac-
tion. The defuzzification produces a nonfuzzy action that bestStep 2)
represents the inferred fuzzy output. Many strategies can be

Step 1)

used for carrying out the defuzzification. The center-of-gravity Step 3)
method is adopted in this paper, that is Step 4)

Z wipty (w;)

w= 2:}17 (17)

Z_:l o (wy)

= Step 5)
wheren = 9 which is the number of the elements of the discrete
universe of discourse4, 4], w; denotes théth element of the  Step 6)

universe of discourse, ang; (w; ) represents the membership of
the fuzzy set as the output of the fuzzy inference. Based on the
linguistic control rules, the decision-lookup tables constructed

ccording to the above discussion, the navigation control al-
rithm is induced as follows.

Give the positions of the starting point and the spec-
ified target and, if necessary, input the environment
database including the desired environment radius.

Evaluate the target orientation anglend the dis-
tance between the robot and the specified target.

If the target distance is less th&rthen go to Step
12), otherwise continue.

Evaluate the obstacle distanégsd;, d,., d;s, and
d,.; according to the current robot posture and the
environment database; or input the linguistic de-
scription for the obstacle distances, which are then
transformed into the numerical symbols.

Compare the obstacle distances to confirm the crit-
ical obstacle distance.

According to the obstacle distances and the envi-
ronmentradius, the current environment category is
recognized by the environment recognizer (ART-II
network).
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TABLE VI
CONNECTION WEIGHTS OF THEART-II NETWORK, WHERE ¢ DENOTES THEINPUT CHANNEL AND j REPRESENTS THECATEGORY

2 7

1 2 3 4 5 6 1 2 3 4 5 6
1408 408 4.08 4.08 4.08 4.08 17 1577 577 577 000 0.00 0.00
2 1477 000 497 4.77 477 471 18 {577 577 000 577 0.00 0.00
3 (477 477 0.00 477 477 477 191577 577 000 000 5.77 0.00
4 1477 477 477 0.00 4.77 4.77 20577 577 0.00 0.00 000 577
51477 477 477 477 000 4.77 21577 000 577 5797 000 0.00
6 | 4.77 477 477 477 497 0.00 221577 000 577 0.00 577 0.00
7 15.00 000 000 500 500 5.00 23577 000 577 000 000 577
j 8 (500 000 500 000 500 500|;7 24|577 000 000 577 577 0.00
9 1500 0.00 500 500 000 5.00 25577 000 000 577 000 577

10 | 5.00 0.00 5.00 5.00 5.00 0.00 26577 000 000 0.00 577 5.77
11:5.00 5.00 0.00 0.00 5.00 5.00 27 (7.07 7.07 000 000 000 0.00
121 5.00 5.00 0.00 5.00 0.00 5.00 28 17.07 000 7.07 0.00 0.00 0.00
1315.00 5.00 0.00 500 5.00 0.00 2917.07 000 000 7.07 0.00 0.00
1415.00 5.00 5.00 0.00 0.00 5.00 30| 7.07 0.00 000 0.00 7.07 0.00
15500 500 500 0.00 5.00 0.00 3117.07 000 000 0.00 000 7.07
16 | 5.00 5.00 5.00 5.00 0.00 0.00 321100 000 000 0.00 000 0.00

Step 7) Select the decision lookup table corresponding t
the current environment category. S

Step 8) Transform the critical obstacle distamkg, (for O
the database case) and the target orientation ang
1 into corresponding quantization valuegandy, Bl
respectively.

Step9) According ta: andy, look up the selected decision
table forw.

Step 10) Determine the turning anglke for a stand-
still-turning gait, then the robot performs the et
standstill-turning gait, otherwise, the robot takes ¢ g <.
straight-going gait with the stable stride when
w = 0.

Step 11) Go to Step 2). Y [m]

Step 12) End. oo X [m]

Fig. 10. Path of the quadruped robot frof to 77 .

E)
04
N

7 T

IV. SIMULATION AND EXPERIMENT

As shown in Fig. 2, the main specifications of TITAN-VIII
relative to the problem arex = 100 mm,n = 200 mm, Ly =
252 mm, andHy = 236 mm. If the ground roughness is less o
than 50 mm, TITAN-VIII can implement the maximized turning o R
angle ofr /4 in a standstill-turning gait cycle or the maximized _
stride of 220 mm in a straight-going gait cycle [47]. Therefore £ g | -
the stable stride of a straight-going gait is giverbas 200 mm N
under the circumstances. In addition, the environment radit KN R
is defined ask = 2 m according to the robot specifications. :
Utilizing the training data provided in Section IlI-A, the ART-II 1§>
network is trained then included into the control loop as the
environment recognizer, whose connection weights betwgen
and F;, are obtained and listed in Table VI. Consequentially Y o] ,
simulations and experiment can be conducted according to tl 0o X [m]

navigation control algorithm as above. Fig. 11. Path of the quadruped robot frofa to 7.

A. Simulation Results 7.0), respectively. The starting and target positions were pro-

In the following simulation examples, the ground roughneséded to the control system. Based on the environment data-
was less than 50 mm, the positions of five convex obstacles avake, simulations were conducted three times. The environment
three concave obstacles were, in meters: (2.0, 2.0), (1.5, 4d3tegory was first recognized at a gait cycle, the command on
(4.0, 4.0), (6.0, 3.0), (3.0, 6.0), (6.0, 6.0), (4.0, 1.0), and (5.turning angle was then found and provided to the robot from
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) (h) ()

) (k)

Fig. 12. Experimental result avoiding obstacles in our laboratory.

the corresponding decision lookup table. If the turning angi Experimental Result

was zero the robot made a straight-going gait with the stableq ¢ rther verify the effectiveness of the proposed algorithm,
stride, otherwise the robot took a standstill-turning gait with the laboratory experiment has also been conducted to navigate
desired turning angle. Fig. 10 presents the walking path of theraN-viI| by the linguistic input. There was an obstacle the
quadruped robot from the starting poi#{(0.8, 6.4: in meters) ropot cannot step on/over and three convex objects with height
to the target/1 (7.5, 1.0: in meters), where each dot denotesgt 30 mm the robot can step on/over on the experimental terrain.
stable stride of the robot. Here, we further give the navigatiathe positions of the starting point and target were also inputted
result of the robot at the turning-poist, C; andD;. The en- g the control system. The obstacle distances were provided in
vironment categories of the robot at these points were no. 8, ife fuzzy language by human—machine interface through the
19 and no. 16, respectively. The turning angle of the robot at tRgyboard in the numerical symbol. Fig. 12 shows the real ex-
points were—n /4, /4 and /8, respectively. Fig. 11 shows perimental photograph of TITAN-VIII navigated to walk from
the path of the quadruped robot walking from the starting poitiie starting point [Fig. 12(a)] to the target [Fig. 12(1)]. The nav-
A2(0.5, 0.4:inmeters) to the targg{(7.5, 7.5: in meters). Simi- igation results of the robot at some typical points are further
larly, the navigation results of the robot at five turning-pdiit  given as follows: At Fig. 12(a), five obstacle distances were pro-
Ca, Ds, E,, andF; were as follows: the environment categoriegided to the controller ilNE, VF, VF, VF, andVF, respectively,
were recognized as no. 5, no. 5, no. 13, no. 3, and no. 3, respien, the current environment category was recognized as no.
tively, and the robot turning-angles at these points wefé, 2, and hence, the robot obtained the navigation command of a
—n /4, 7 /4, 37 /16, andx /16, respectively. turning anglep = —= /4 from the second decision lookup table.
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At Fig. 12(b), five obstacle distances warg, VF, VF, NE, and [6]
VF, respectively, the current environment category was then rec-
ognized as no. 5 and the turning angle of the robot gvas 0 7
from the fifth decision lookup table, and hence, the robot per-
formed a straight-going gait cycle with the stable stritieAt

Fig. 12(f), five obstacle distances wewé, VN, VF, VF, and 1
VF, respectively, the current environment category was recog-
nized as no. 3, and the turning angle was- 0, therefore, the  [9]

robot took a straight-going gait and stepped on a convex object.
And at Fig. 12(j), five obstacle distances were provided to the;q)
controller inVF, VF, VF, VF, andVF, respectively, the current
environment category was recognized as no. 1, and the turnir{bl]
angle wasp = —x /4 from the first decision lookup table.

[12]

V. CONCLUSION
13

When an environment where a quadruped robot walks is ver[y ]
complex and uncertain, adaptive navigation control is necessary.
This paper has considerably extended the existing Iocomotio[t14]
control of quadruped robots by introducing the adaptive naviga-
tion into gait generation and implementation. The adaptive nav[-15]
igation has been realized through online recognition of environ=
ment category, selection of an adequate rule base to the recog-
nized environment, and fuzzy inference based on the select{ﬁi6
fuzzy-rule base. Outperforming the existing applications of AR ]
basic principle, we have successfully used an ART-Il network
to recognize the environment category after its offline learning
Furthermore, this recognizer can be applied to other IocomotioHn
machines including mobile robots and other legged robots.

Based on the online recognition of environment categoried18l
a fuzzy controller has been designed and implemented by the
adaptive selection of fuzzy-rule base in response to changes p#]
environment category. The robustness of the controller is guar-
anteed so long as each rule base is established properly to the
corresponding environment category. Therefore, the proposeeb]
fuzzy control scheme is superior to classical/conventional ones
in robust stability and real-time operation due to the implemeny,,
tation of a lookup table. The feasibility and effectiveness of the
proposed controller has been demonstrated through the simul&—Z]
tion and experiment. It should be pointed out that, if a human op-
erator can be replaced by a sophisticated vision system to iden-
tify various obstacles and to measure the obstacle distances, tiél
full autonomous walking of a quadruped robot will be entirely

realized by means of the proposed control algorithm. [24]
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